Markov Blanket Ranking using Kernel-based Conditional Dependence Measures

نویسندگان

  • Eric V. Strobl
  • Shyam Visweswaran
چکیده

Developing feature selection algorithms that move beyond a pure correlational to a more causal analysis of observational data is an important problem in the sciences. Several algorithms attempt to do so by discovering the Markov blanket of a target, but they all contain a forward selection step which variables must pass in order to be included in the conditioning set. As a result, these algorithms may not consider all possible conditional multivariate combinations. We improve on this limitation by proposing a backward elimination method that uses a kernel-based conditional dependence measure to identify the Markov blanket in a fully multivariate fashion. The algorithm is easy to implement and compares favorably to other methods on synthetic and real datasets.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning Bayesian Network Structure using Markov Blanket in K2 Algorithm

‎A Bayesian network is a graphical model that represents a set of random variables and their causal relationship via a Directed Acyclic Graph (DAG)‎. ‎There are basically two methods used for learning Bayesian network‎: ‎parameter-learning and structure-learning‎. ‎One of the most effective structure-learning methods is K2 algorithm‎. ‎Because the performance of the K2 algorithm depends on node...

متن کامل

Feature Selection by Approximating the Markov Blanket in a Kernel-Induced Space

The proposed feature selection method aims to find a minimum subset of the most informative variables for classification/regression by efficiently approximating the Markov Blanket which is a set of variables that can shield a certain variable from the target. Instead of relying on the conditional independence test or network structure learning, the new method uses Hilbert-Schmidt Independence c...

متن کامل

Discovering Structure in Continuous Variables Using Bayesian Networks

We study Bayesian networks for continuous variables using nonlinear conditional density estimators. We demonstrate that useful structures can be extracted from a data set in a self-organized way and we present sampling techniques for belief update based on Markov blanket conditional density models.

متن کامل

Kernel Measures of Conditional Dependence

We propose a new measure of conditional dependence of random variables, based on normalized cross-covariance operators on reproducing kernel Hilbert spaces. Unlike previous kernel dependence measures, the proposed criterion does not depend on the choice of kernel in the limit of infinite data, for a wide class of kernels. At the same time, it has a straightforward empirical estimate with good c...

متن کامل

Structured Stein Variational Inference for Continuous Graphical Models

We propose a novel distributed inference algorithm for continuous graphical models by extending Stein variational gradient descent (SVGD) (Liu & Wang, 2016) to leverage the Markov dependency structure of the distribution of interest. The idea is to use a set of local kernel functions over the Markov blanket of each node, which alleviates the problem of the curse of high dimensionality and simul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1402.0108  شماره 

صفحات  -

تاریخ انتشار 2014